2,178 research outputs found

    Measurement and control of spatial qubits generated by passing photons through double-slits

    Full text link
    We present an experimental study of the non-classical correlations of a pair of spatial qubits formed by passing two down-converted photons through a pair of double slits. After confirming the entanglement generated in our setup by quantum tomography using separate measurements of the slit images and the interference patterns, we show that the complete Hilbert space of the spatial qubits can be accessed by measurements performed in a single plane between the image plane and the focal plane of a lens. Specifically, it is possible to obtain both the which-path and the interference information needed for quantum tomography in a single scan of the transversal distribution of photon coincidences. Since this method can easily be extended to multi-dimensional systems, it may be a valuable tool in the application of spatial qudits to quantum information processes.Comment: 19 pages, including 10 figures and 2 table

    On-line Response Tests on Case History of Earthquake Induced Deformation of River Dykes Founded on Saturated Sandy Deposits

    Get PDF
    River dykes and road embankments are frequently damaged during earthquakes. The liquefaction of foundation, the behavior of which is not yet well realized, is considered to be the main cause of the damage. Based on the results of past studies, the foundation of an embankment was divided into three zones to examine the failure modes. One-dimensional on-line earthquake tests, which were conducted by a combination of element tests and computer earthquake response analyses, were performed for such zones of actual river dykes damaged during earthquake. The cumulative horizontal displacement values obtained by the tests were compared with the measured embankment-crest settlement data, which showed that the liquefaction sliding failure under the toe of slope of such an embankment is found to be the most detrimental of all failure modes

    Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    Full text link
    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critical wave number squared. Contrary to this, wave number isn't explicitly effective with lack of flow or constant flow. Thus, spatial size of pattern is especially important for regulating pattern formation in the plasmodium. On the other hand, the flow term is negligible in the vicinity of bifurcation at infinitely small wave number, and therefore the pattern formation by simple reaction-diffusion will also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur

    Analytical treatment of interacting Fermi gas in arbitrary dimensional harmonic trap

    Full text link
    We study normal state properties of an interacting Fermi gas in an isotropic harmonic trap of arbitrary dimensions. We exactly calculate the first-order perturbation terms in the ground state energy and chemical potential, and obtain simple analytic expressions of the total energy and chemical potential. At zero temperature, we find that Thomas-Fermi approximation agrees well with exact results for any dimension even though system is dilute and small, i.e. when the Thomas-Fermi approximation is generally expected to fail. In the high temperature (classical) region, we find interaction energy decreases in proportion to T^(-d/2), where T is temperature and d is dimension of the system. Effect of interaction in the ground state in two and three-dimensional systems is also discussed.Comment: 15 pages, 4 figure

    Treacher Collins syndrome with choanal atresia: a case report and review of disease features

    Get PDF
    SummaryTreacher Collins Syndrome - or mandibulofacial dysostosis – is a rare condition that presents several craniofacial deformities of different levels. This is a congenital malformation involving the first and second branchial arches. Incidence is estimated to range between 1-40,000 to 1-70,000 of live births. The disorder is characterized by abnormalities of the auricular pinna, hypoplasia of facial bones, antimongoloid slanting palpebral fissures with coloboma of the lower eyelids and cleft palate. Treacher Collins Syndrome is rarely associated with choanal atresia. A multidisciplinary team, including craniofacial surgeon, ophthalmologist, speech therapist, dental surgeon and otorhinolaryngologist, is the most appropriate setting to manage these patients. This study reports a rare case of Treacher Collins Syndrome with choanal atresia, presenting literature review and multidisciplinary intervention

    Solvent and thermal stability, and pH kinetics, of proline-specific dipeptidyl peptidase IV-like enzyme from bovine serum

    Get PDF
    Proline-specific dipeptidyl peptidase-like (DPP IV; EC 3.4.14.5) activity in bovine serum has attracted little attention despite its ready availability and the paucity of useful proline-cleaving enzymes. Bovine serum DPP IV-like peptidase is very tolerant of organic solvents, particularly acetonitrile: upon incubation for 1 h at room temperature in 70% acetonitrile, 47% dimethylformamide, 54% DMSO and 33% tetrahydrofuran (v/v concentrations) followed by dilution into the standard assay mixture, the enzyme retained half of its aqueous activity. As for thermal performance in aqueous buffer, its relative activity increased up to 50 ◦C. Upon thermoinactivation at 71 ◦C, pH 8.0 (samples removed periodically, cooled on ice, then assayed under optimal conditions), residual activities over short times fit a first-order decay with a k-value of 0.071±0.0034 min−1. Over longer times, residual activities fit to a double exponential decay with k1 and k2 values of 0.218±0.025 min−1 (46±4% of overall decay) and 0.040±0.002 min−1 (54±4% of overall decay), respectively. The enzyme’s solvent and thermal tolerances suggest that it may have potential for use as a biocatalyst in industry. Kinetic analysis with the fluorogenic substrate Gly-Pro-7-aminomethylcoumarin over a range of pH values indicated two pK values at 6.18±0.07 and at 9.70±0.50. We ascribe the lower value to the active site histidine; the higher may be due to the active site serine or to a free amino group in the substrate

    Microscopic elasticity of complex systems

    Full text link
    Lecture Notes for the Erice Summer School 2005 Computer Simulations in Condensed Matter: from Materials to Chemical Biology. Perspectives in celebration of the 65th Birthday of Mike Klein organized by Kurt Binder, Giovanni Ciccotti and Mauro Ferrari
    corecore